A multivariate version of the disk convolution
نویسندگان
چکیده
We present an explicit product formula for the spherical functions of the compact Gelfand pairs (G,K1) = (SU(p+ q), SU(p)× SU(q)) with p ≥ 2q, which can be considered as the elementary spherical functions of one-dimensional K-type for the Hermitian symmetric spaces G/K with K = S(U(p)× U(q)). Due to results of Heckman, they can be expressed in terms of Heckman-Opdam Jacobi polynomials of type BCq with specific half-integer multiplicities. By analytic continuation with respect to the multiplicity parameters we obtain positive product formulas for the extensions of these spherical functions as well as associated compact and commutative hypergroup structures parametrized by real p ∈]2q−1,∞[. We also obtain explicit product formulas for the involved continuous two-parameter family of Heckman-Opdam Jacobi polynomials with regular, but not necessarily positive multiplicities. The results of this paper extend well known results for the disk convolutions for q = 1 to higher rank.
منابع مشابه
Subordination and Superordination Properties for Convolution Operator
In present paper a certain convolution operator of analytic functions is defined. Moreover, subordination and superordination- preserving properties for a class of analytic operators defined on the space of normalized analytic functions in the open unit disk is obtained. We also apply this to obtain sandwich results and generalizations of some known results.
متن کاملcharm April 12 , 2012
bgAdjust Remove background Description Estimate and remove background signal using anti-genomic background probes Usage bgAdjust(dat, copy=TRUE) Arguments dat a TilingFeatureSet copy Only relevant when using disk-backed objects. If TRUE a copy will be made leaving the original object (dat) unchanged. The input object will not be preserved if copy=FALSE Details Background signal removal using a ...
متن کاملCertain subclasses of bi-univalent functions associated with the Aghalary-Ebadian-Wang operator
In this paper, we introduce and investigate two new subclasses of the functions class $ Sigma $ of bi-univalent functions defined in the open unit disk, which are associated with the Aghalary-Ebadian-Wang operator. We estimate the coefficients $|a_{2} |$ and $|a_{3} |$ for functions in these new subclasses. Several consequences of the result are also pointed out.
متن کاملAbstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کامل